產品目錄
  • 細胞培養進口血清
    進口胎牛血清
    進口新生牛血清
    進口豬血清
    馬血清
  • 支原體檢測盒及標準品
    常規PCR檢測試劑盒
    熒光定量PCR檢測(qPCR法)
    支原體DNA提取
    靈敏度標準品(方法驗證用)
    特異性標準品(方法驗證用)
    PCR定量標準品(可用于方法驗證)
  • 支原體祛除試劑
    細胞中支原體祛除
    環境支原體祛除
    水槽支原體祛除
  • 干細胞培養基
  • DNA/RNA污染祛除
    DNA/RNA污染祛除試劑
    DNA污染監測
  • RNA病毒研究試劑
    RNA病毒檢測試劑盒
    病毒RNA提取
  • PCR儀器及配套產品
    DNA污染監測祛除
    PCR/qPCR儀性能檢查
    PCR試劑
    PCR試劑盒
    PCR預混液(凍干粉)
    熱啟動聚合酶MB Taq DNA
  • 微生物PCR檢測
    食品檢測類產品
    食品微生物檢測
    細菌PCR檢測
歡迎來到 威正翔禹|締一生物官方網站|咨詢熱線:400-166-8600
咨詢熱線
400-166-8600

產品目錄
  • 細胞培養進口血清
    進口胎牛血清
    進口新生牛血清
    進口豬血清
    馬血清
  • 支原體檢測盒及標準品
    常規PCR檢測試劑盒
    熒光定量PCR檢測(qPCR法)
    支原體DNA提取
    靈敏度標準品(方法驗證用)
    特異性標準品(方法驗證用)
    PCR定量標準品(可用于方法驗證)
  • 支原體祛除試劑
    細胞中支原體祛除
    環境支原體祛除
    水槽支原體祛除
  • 干細胞培養基
  • DNA/RNA污染祛除
    DNA/RNA污染祛除試劑
    DNA污染監測
  • RNA病毒研究試劑
    RNA病毒檢測試劑盒
    病毒RNA提取
  • PCR儀器及配套產品
    DNA污染監測祛除
    PCR/qPCR儀性能檢查
    PCR試劑
    PCR試劑盒
    PCR預混液(凍干粉)
    熱啟動聚合酶MB Taq DNA
  • 微生物PCR檢測
    食品檢測類產品
    食品微生物檢測
    細菌PCR檢測

發現控制大腦可塑性的基本規則

2018-06-28 15:01來源:生物谷

我們的大腦具有很高的靈活性或“可塑性”,這是因為神經元能夠通過與其他的神經元建立新的或更強的連接來做新的事情。但是,如果一些連接得到強化,那么神經科學家們就會推理神經元必須進行相應地抵消,以免它們接收到過多的輸入信號。在一項新的科學研究中,來自美國麻省理工學院皮考爾學習與記憶研究所的研究人員**證實了這種平衡是如何實現的:當一個被稱為突觸的連接得到強化時,緊鄰的突觸基于一種至關重要的被稱作Arc的蛋白的作用而發生減弱。相關研究結果發表在2018年6月22日的Science期刊上,論文標題為“Locally coordinated synaptic plasticity of visual cortex neurons in vivo”。論文通信作者為皮考爾學習與記憶研究所神經科學教授Mriganka Sur。論文**作者為Sur實驗室博士后研究員Sami El-Boustani 和Jacque Pak Kan Ip。


Sur說,他很高興,但并不感到吃驚的是,他的團隊在諸如大腦這樣的復雜系統的核心中發現了一種簡單的基本規則,在那里1000億個神經元中的每一個都有上千個不斷發生變化的突觸。


Sur說,“復雜系統的集體行為總是有簡單的規則。當一個突觸的強度增加時,通過一種明確的分子機制,在它的50微米內的其他突觸的強度會下降。”


他說,這一發現解釋了神經元中的突觸強化和減弱如何結合在一起導致大腦可塑性產生。


多次操縱


盡管這項研究發現的規則是比較簡單的,但是揭示出這一點的實驗并不會如此簡單。當他們誘導小鼠視覺皮層可塑性,隨后追蹤突觸如何發生變化時,他們完成了多項**。


在一個關鍵的實驗中,這些研究人員通過改變神經元的“感受域(receptive field)”---神經元作出反應的視野區域---來誘導可塑性。神經元通過位于它們的分枝樣樹突的小棘表面上的突觸接受輸入。為了改變一個神經元的感受域,他們在屏幕上給小鼠顯示了與這個神經元的初始感受域不同的靶區域,隨后密切地監測它的突觸發生的變化,他們精確地找到了與這個神經元相關的樹突棘。每當這個靶區域處于他們想要誘導的新的感受域位置時,他們通過在小鼠視覺皮層內閃現藍光來加強這個神經元的反應,就像另一個神經元那樣觸發額外的活性。這個神經元已經基因改造,能夠被閃現的藍光激活,這種技術被稱為“光遺傳學(optogenetics)”。


這些研究人員一遍又一遍地做了這個實驗。由于光刺激與小鼠視覺的這個新位置中的靶區域的每次出現相關聯,這導致這個神經元增強了樹突棘上的特定突觸,從而編碼新的感受域。


El-Boustani說,“我們能夠重編程完整大腦中的單個神經元并在活體組織中見證允許這些細胞通過突觸可塑性整合新功能的分子機制的多樣性,我認為這是相當了不起的?!?/span>


隨著編碼新的感受域的突觸在增加,這些研究人員能夠在雙光子顯微鏡下觀察到附近的突觸在縮小。在缺乏光刺激的實驗性對照神經元中,他們并沒有觀察到這些變化。


隨后這些研究人員進一步證實了他們的發現。鑒于突觸是非常小的,它們接近于光學顯微鏡的分辨率極限。因此,在這些實驗之后,他們仔細分析了含有受到操縱的神經元和對照神經元的樹突的腦組織,并將它們運送到瑞士洛桑聯邦理工學院的合作者那里。他們進行了專門的更高分辨率的三維電子顯微鏡成像,證實了在雙光子顯微鏡下觀察到的結構差異是有效的。Sur 說,“這是在體內成像后重建的最長樹突長度?!?/span>


當然,利用藍光閃現重編程小鼠中的經過基因改造的神經元是一種不自然的操縱,因此這些研究人員開展了另一個更經典的“單眼剝奪(monocular deprivation)”實驗,在這個實驗中,他們暫時地閉合了小鼠的一只眼睛。當發生這種情況時,與這只閉合的眼睛相關的神經元中的突觸發生減弱,而與另一只仍然打開的眼睛相關的突觸發生強化。隨后,當他們重新打開這只之前閉合的眼睛時,這些突觸再次重新排列。他們也跟蹤了這一行動,并且觀察到隨著突觸發生強化,它們鄰近的突觸發生減弱以作為補償。


破解Arc的奧秘


在觀察到這種新規則發揮作用后,這些研究人員仍然渴望了解神經元如何遵守它。他們使用一種化學標簽來觀察突觸中的關鍵性的“AMPA”受體如何發生變化,并觀察到突觸擴大和強化與更多的AMPA受體表達相關,而突觸縮小和減弱與更少的AMPA受體表達相關。


蛋白Arc調節AMPA受體表達,因此這些研究人員意識到他們必須追蹤Arc才能完全理解發生了什么。Sur說,問題在于,從來沒有人在活著的動物的大腦中做到這一點。


利用這種化學標簽,這些研究人員能夠觀察到發生強化的突觸被發生減弱的富含Arc表達的突觸包圍著。Arc水平下降的突觸能夠表達更多的AMPA受體,而相鄰樹突棘中的Arc水平增加導致這些突觸表達更少的AMPA受體。


Ip說,“我們認為Arc保持了突觸資源的平衡。這是Arc的主要作用?!?/span>


Sur說,因此這項研究解決了Arc的謎團:之前沒有人理解為什么Arc似乎在經歷突觸可塑性的樹突中上調,即使它起到削弱突觸的作用,但是如今答案是清楚的。突觸強化會增加Arc表達從而讓它們鄰近的突觸削弱。


Sur補充道,這種規則有助于解釋學習和記憶如何可能在單個神經元水平上發揮作用,這是因為它顯示了神經元如何適應對另一個神經元的重復模擬。